

Chapitre 10: Mouvement dans un champ uniforme

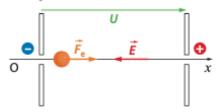
Feuille d'évaluation à rendre obligatoirement avec la copie

Correction activité documentaire n°10.2 : Étude d'un accélérateur linéaire de particules (LINAC)

Inspiré de Belin éducation

- La particule doit avoir une charge électrique pour être propulsée par la force électrostatique.
- La masse d'un ion est égale à celle de son noyau. La masse de l'ion hydrure est égale à la masse d'un proton $m_{\rm D}=1,67\times 10^{-27}$ kg et la valeur absolue de sa charge à la charge élémentaire.

$$\frac{F_{\rm e}}{P} = \frac{|q|\mathcal{E}}{m_{\rm H-g}} = \frac{{\rm e}U}{m_{\rm p}gd} = 9.8 \times 10^{10} \; {\rm en \; prenant} \; U = 1 \; 000 \; {\rm V \; et}$$


d = 0,1 m donc $F_e \gg P$, le poids est négligeable devant la force électrique.

3 L'énergie cinétique vaut $\varepsilon_c = \frac{1}{2} m v^2$ donc $v = \sqrt{\frac{2\varepsilon_c}{m}}$

E _c (MeV)	3	50	100	160
E_{c} (J)	4.8×10^{-13}	$8,0 \times 10^{-12}$	$1,6 \times 10^{-11}$	$2,6\times10^{-11}$
$v (m \cdot s^{-1})$	$2,4 \times 10^{7}$	9,8 × 10 ⁷	1,4 × 10 ⁸	1,8 × 10 ⁸

Le mouvement de {l'ion H⁻} est étudié dans le référentiel terrestre supposé galiléen.

Les coordonnées des vecteurs sont données dans le repère Ox porté sur la figure.

Conditions initiales :

Å t = 0, le système est en 0 et sa vitesse est nulle. D'après la deuxième loi de Newton : $\Sigma \vec{F}_{ext} = m_p \times \vec{a}$ Comme le poids est négligeable : $\vec{F}_e = m_p \times \vec{a}$ $\vec{F}_e = -e\vec{E}$ donc l'expression de l'accélération est $\vec{a} = -\frac{e\vec{E}}{m_0}$ En projetant sur l'axe $0x: a_x = -\frac{e E_x}{m_0}$ avec $E_x = -E$.

Finalement : $a_x = \frac{e \mathcal{E}}{m_p}$

• Par définition : $a_x = \frac{dv_x(t)}{dt} = \frac{e \mathcal{E}}{m_0}$ donc $v_x(t)$ est une primitive

de $\frac{e\,\mathcal{E}}{m_{\rm p}}$ qui est constant. $v_x(t) = \frac{e\,\mathcal{E}}{m_{\rm p}} \times t + \mathsf{C}$, la constante C est égale à la vitesse initiale donc C = 0. Finalement : $v_x(t) = \frac{e \mathcal{E}}{m_p} \times t$

· Par définition :

 $v_x(t) = \frac{dx(t)}{dt} \operatorname{donc} x(t)$ est une primitive de $v_x(t) = \frac{e E}{m_p} \times t$.

 $x(t) = \frac{1}{2} \times \frac{e \, \mathcal{E}}{m_p} \times t^2 + K$, la constante K = 0 (position initiale de l'ion hydrure).

Finalement : $x(t) = \frac{1}{2} \times \frac{e \, \mathcal{E}}{m_{-}} \times t^{2}$